
An Advanced Methodology for Measuring and Characterizing Software Aging

Pengfei Zheng*, Qingguo Xu*, Yong Qi*

*School of Electronic and Information Engineering
*Xi’an Jiaotong University

 No.28, Xianning West Road, Xi’an, Shanxi, China
{p.f.zheng.phd, yishi.2011} @stu.xjtu.edu.cn

Abstract—Software systems continuously running over a long
time may suffer gradual performance degradation or failure
rate increasing. This phenomenon, known as ‘Software Aging’,
has become a great challenge to dependability-critical software
systems. Researchers have made remarkable achievements in
predicting resource exhaustion time and designing optimal
rejuvenation plan. However, limited works focus on measuring
aging and characterizing aging progress. And currently the
only widely used tool is Sen’s slope estimator. We pinpoint
some drawbacks of this approach: (1) a not unified estimator
which needs periodicity test and period length inference in
advance (2) an oversimplified linear description of aging pro-
gress (3) with no ability to distinguish between abrupt change
and the “aging-like” gradual degradation. We design an enu-
merative Hodrick-Prescott filter to overcome all these short-
comings. And we also propose a new metric AS based on the
nonlinear trend estimated by Hodrick-Prescott filter to dynam-
ically measure severity of aging. Our approach and metric are
validated on real aging time series collected from a VOD (vid-
eo-on-demand) server. The results shows our approach im-
prove the Sen’s slope estimator a lot.

Keywords-Software Aging; Hodrick-Prescott filter; Sen’s
Slope Estimator; Measurement ; Aging progress

I. INTRODUCTION

Software aging was initially reported in multi-user tele-
communication systems [1]. When aging exists, the commu-
nication platform will enter a “Failure-Prone” state that it
continues to lose ongoing calls, even not with peak work-
loads. Recently aging phenomena have been reported or veri-
fied on almost all types of software, such as Java Virtual
Machine , Apache Web Server [4] [5], AT&T billing sys-
tems, SOAP servers, online transaction processing servers,
Linux Operating systems [6], cluster systems and military
systems. A considerable portion of failures occurring in these
systems are not abrupt system halt but “smooth” degradation
over long periods. For example, the response time of an E-
Commerce server may increase from time to time and finally
become unacceptably long or infinite (no response). Another
software aging example is related to memory leak in some
systems. Memory leak still happens even though GC (Gar-
bage Collection) technique is adopted. Accumulation of
memory leaks will diminish system performance severely
and deplete all amount of available memory in the worst case.

When the available memory is exhausted, any attempt to
allocate more memory will fail. The system may terminate
itself, or generate a segmentation fault in this situation.

 Choosing a reliable system is one of the most important
considerations for commercial and industrial clients. This
reduces the direct costs of reacting to downtime as well as
the costs associated with productivity. Software aging poses
great threats and challenges. As complexity of software
grows day by day, though systematic testing and validation
methods become more and more sophisticated and efficient,
aging related bugs can still escape the extensive testing stage
and be activated under some irreproducible or uncertain con-
ditions while the system is operational.

Some acknowledged causes of software aging are
memory leaks, unreleased file-locks, corrupted data, and
round-off error. The best method to counteract aging is soft-
ware rejuvenation, during which the running system will be
scheduled to restart periodically. After the system is restarted,
accumulated erroneous conditions or corrupted data are
completely swept away. Consequently, the system can re-
cover to a normally running state by rejuvenation. Recently,
virtualization technique is also developed to improve soft-
ware rejuvenation.

Currently, there are still not an elaborately designed met-
ric to quantitatively measure the severity of software aging,
except a metric “the Sen’s slope estimator” widely used by
many researchers[3][4][5]. In fact “the Sen’s Slope estimator”
provides an estimation of magnitude of the “trend” in a time
series composed of performance metrics (e.g. response time,
throughput rate) or resource usage indicators (e.g. available
memory, CPU utilization). The reason why using “the Sen’s
Slope” to measure software aging is:

Recent research shows that, the primary symptoms of
software aging are gradual system performance degradation,
gradual system resource exhaustion, or growing failure rate.
All of these can be generally manifested by a descending or
ascending trend of time series indicating performance (or
resource usage). We call these trends the “aging trend” to
characterize aging phenomena. Sen assumes the trend of a
time series to be always a linear trend, and proposes a statis-
tic to estimate the slope. So the Sen’s slope estimator is
widely accepted by researchers, which measures the strength
of the aging trend. And the estimated slope is a metric to
measure the severity of aging (the larger the slope is, the
more severely aging acts).

2012 IEEE 23rd International Symposium on Software Reliability Engineering Workshops

978-0-7695-4928-6/12 $26.00 © 2012 IEEE

DOI 10.1109/ISSREW.2012.81

244

2012 IEEE 23rd International Symposium on Software Reliability Engineering Workshops

978-0-7695-4928-6/12 $26.00 © 2012 IEEE

DOI 10.1109/ISSREW.2012.81

253

Figure 1. An example of Sen’s slope estimator used in [5]

In addition, the linear trend estimated by the Sen’s slope
estimator is also used to roughly describe the aging progress.
For example, in [5] the author performed a series of long-
running aging tests on an Apache Server, a James Mail Serv-
er (a Java based mail server) and a release of CARDAMOM
(a middleware used by air traffic control). Real time memory
consumption of these three systems was collected (scatter
points in Fig. 1). Statistical trend test was utilized to testify a
trend of memory exhaustion. The detected aging trends were
then estimated by Sen’s slope estimator. They were mani-
fested by red straight lines in Fig. 1, which can approximate-
ly characterize the aging progress related to memory deple-
tion.

While in practical applications, Sen’s slope estimator still
has some intrinsic drawbacks. We summarize its three main
limits in measuring and characterizing software aging:

1) A hybrid but not unified estimator : Depending on
whether the time series is periodic (or cyclical), Sen’s slope
estimator takes different estimating approaches, respectively.
For a time series without periodic components embedded,
standard Sen’s slope estimator is used. But for periodic
time series, another estimator “seasonal Sen’s slope estima-
tor” proposed by Hirsch [10] is used. These two estimators
are collectively called Sen’s slope estimator. In fact, the
Sen’s slope estimator is such a hybrid estimator (See Fig. 2)
that causes a big trouble.

Because we have no idea about the periodicity of a time
series, an automatic procedure must be introduced to test
whether the time series is periodic or not. Moreover, anoth-
er procedure should also be introduced to infer its period
length if it is periodic. These two essential preliminary pro-
cedures make the Sen’s slope estimator difficult to apply in
normal situation, because there is no methods can handle
these perfectly without human knowledge. Here are some
detail reasons:

� Periodicity test for a time series is still an imperfect
and developing research target which many re-
searchers still devote them to.
Although there are some methods provide exact test
based on least squares estimation, they are not robust.
Even worse, they often present misleading results if
the original noise assumptions do not follow Gaussi-
an distribution.

Figure 2. Hybrid Structure of Sen’s slope estimator

� To infer period length, Fourier Transform and Wave-
lets are the most popular tools. Fourier Transform is
based on an assumption that any stationary time se-
ries may be approximately as superposition of sines
and cosines at different periods (or frequencies). But
for a significantly non-stationary time series, which
are the most cases, Fourier analysis cannot cope.
Wavelets can handle non-stationary time series, but
choosing the appropriate wavelets basis (e.g. Haar
wavelets, Daubachies wavelets) and determining the
optimal decomposition level are intricate and also
need domain knowledge.

In a word, Sen’s hybrid slope estimator for measuring ag-
ing trend is difficult to apply in actual situations. We should
avoid the periodicity test and period length inference. The
best way to settle this is to provide a unified trend estimator,
which can estimate the aging trend in a unified procedure, no
matter whether the time series are periodic or not.

2) Oversimplified Discription of Aging Progress :
Standard Sen’s slope estimator and Seasonal Sen’s slope
estimaor share a common rationale to perform aging trend
estimation. They all assume the estimated aging trend to
be a linear trend. In most cases, the real aging trend is not
a linear trend. It can be complex like quadratic,
logarithmic or sigmoid trend, and in most cases it’s hardly
to be structured. So the aging trend estimated by Sen’s
slope estimator is oversimplified and unable to character-
ize the aging process in detail. It can’t tell us: (1) When
does aging start to show effect? (2) When do system re-
sources begin to be abnormally encroached owing to ag-
ing-related bugs? (3) During which time period are aging

245254

related bugs activated frequently and which time period
scarcely?

Firstly, in this paper we introduce an approach using Ho-
drick-Prescott filter in an enumerative way with a Cauchy
type stopping criterion to estimate the aging trend. This ap-
proach overcomes the drawbacks of the Sen’s slope estima-
tor with some improvements:

� A unified estimator, estimating aging trend in a uni-
fied computing procedure no matter whether or not
the time series shows periodic pattern.

� Ability to estimate nonlinear aging trend, which
characterizes the aging progress more accurately,
and provides more detail information of aging.

� Ability to distinguish between abrupt change and
aging trend, which is usually a smooth degradation.

Secondly, we propose a metric Aging Severity (AS in
abbreviation) which measures the severity of aging. AS has
2 advantages that the slope (estimated by Sen’s estimator)
don’t have:

� It is a composite metric which takes into considera-
tion 2 fundamental features of software aging, the
degradation amount (represented by R) and the deg-
radation persistence (represented by G). While, the
Sen’s slope estimator only measures the degradation
amount, with no consideration of the gradualness or
smoothness of degradation.

� It is a dynamic metric, which reflects the develop-
ment of aging dynamically.

The rest of paper is organized as follows: In Section II,
we survey the recent literature about software aging, whereas
in Section III we describe the methodology of our proposed
method. In Section IV, we detail our measurement of soft-
ware aging. Finally in Section V, we conclude the paper.

II. RELATED WORKS

 Currently, software aging analysis can be divided into
two categories: the model based and the measurement based.
Commonly, the analytic models include Markov process
models [2], semi-Markov process models, semi-Markov re-
ward process models, hidden-Markov process models, sto-
chastic petri net models and so on. The basic idea of model
based methods is to construct a stochastic process describing
a few states of the target system and solve the model to de-
termine the optimal rejuvenation interval. Besides, multi-
granularity and multiple-action rejuvenation has also been
developed. In this situation an optimal rejuvenation strategy
is often deduced and the only goal is to minimize costs due
to outage of aging failure.

Measurement based approaches primarily focus on ap-
plying statistical and machine learning methods on datasets
collected through monitoring or profiling tools. Performance
metrics or resource usage indicators are often collected pe-
riodically to get insight into the operational conditions of
the monitored system. The Sen’s slope estimator, the Mann-
Kendall test [3] [4], and the Seasonal Kendall test [4] are all
statistical approaches to analyze aging. For machine learn-
ing approaches, when the system is running normally (or

abnormally), data can be collected as positive samples (or
negative samples) to train models such as ARMA models
[4], linear regression models, M5P models [8], or MSET
models. Then the models can be utilized to forecast resource
usage or performance in the near future. Often a threshold
(indicating performance baseline or upper bound of resource
consumption) is compared to the predicted values to decide
whether rejuvenation should be scheduled to mitigate aging
effect.

III. IMPROVED AGING TREND ESTIMATION

A. Introduction to Hodrick-Prescott Filter
As mentioned in Section I, the hybrid structure of Sen’s

slope estimator makes it impractical to estimate aging trend,
because it is often too complex and intricate to truly detect
periodicity and accurately infer period length. An adaptive
trend extraction method Hodrick-Prescott filter is introduced
in this section. It can estimate the aging trend in a unified
procedure, no matter whether or not periodic component is in
the time series.

In addition, the trend estimated by Hodrick-Prescott filter
is unstructured (with no structure of trend assumed) and da-
ta-driven. Therefore, when the raw time series shows a non-
linear pattern, Hodrick-Prescott filter can extract the latent
nonlinear trend with cyclical fluctuations and random noises
filtered out.

The Hodrick–Prescott filter is a time series decomposi-
tion tool proposed by Robert J. Hodrick and Nobel Prize
winner Edward C. Prescott [9]. It uses a commonly accepted
additive model for time series decomposition: �� = �� + ��, � = 1,2,3, ⋯ , � � ������������������� (1)�
{Yt} denotes a time series {Y1, Y2, … YT} and Yt can be de-
composed as a sum of trend component {Tt} and a residual
component {Ct}. {Ct} is usually composed of periodic com-
ponents and irregular noises. Hodrick-Prescott filter treats
periodic component and irregular component both as short-
term, compared to trend component (represents long term
movement). Hence Hodrick-Prescott filter can extract the
trend component not matter whether the periodic component
is present or not.

The trend component {Tt} is the optimal solution of the
following programming problem:

�	
 �� ��
 + � �[(�� − ����) − (���� − ���
)]

�

���

�

���
� (2)

 In fact the trend component extracted by Hodrick-Prescott
filter is a smooth representation of raw time series. The pa-
rameter λ is the “smooth parameter” which penalizes varia-
bility in the trend component series .The larger the value of λ
is, the smoother the trend component series is. In the extreme
case when λ is infinite, T will become {0, 0…0} (extreme
smooth with no variability). Because we don’t know how
large λ should be (but should not be too big), so we design an
enumerative filtering procedure, with a small λ initialized
and increased by a small step 0.001, until the “smoothness”
grows extremely subtle. The “smoothness” of every step is
measured by CV (Coefficient of Variance) and we provide
a Cauchy type stopping criterion:

246255

�����(�(���))���(�(���)) �����(�(�))���(�(�)) �
�����(�(�))���(�(�)) � < �!"#ℎ%&�'* (3)

T(i) represents the trend component in the i-th loop, and
Cauchystop is set to 0.0005. This is a common value for Cau-
chy type stopping criterion. The initial value of λ is compu-
ting using Schlicht’s approach [11].

B. Nonlinear Aging Trend Estimation
In this section, we compare the aging trend estimated by

our enumerative Hodrick-Prescott filter and the Sen’s slope
estimator. The raw time series were collected on a “Helix
Sever” testbed built in our experiment. In Section IV, we will
introduce the data collection process. Here we present 3 ex-
amples. They are so typical that we can evaluate the two
kinds of aging trend estimator on

� Periodic and aperiodic time series
� Time series with trend and without trend
In Fig. 3(a) the %Disk Time (ratio of elapsed time when

the disk was busy) of Helix sever shows no periodic pattern
and it can be divided into 3 phases (a stable phase, a growing
phase and another stable phase). The nonlinear trend esti-
mated by Hodrick-Prescott filter successfully captures these
details while Sen’s trend estimation is not capable to do this.

In Fig. 3(b) the Average Output Bandwidth was collected
when Helix server ran on light-weight periodic workloads.
Apparently the bandwidth is trend free and Hodrick-Prescott
filter also accurately extracts a “zero” trend, so as Sen’s
slope estimator.

(a) Comparison of trend estimated on %Disk Time

(b) Comparison of trend estimated on Output Bandwidth

(c) Comparison of trend estimated on Output Bandwidth
Figure 3. Comparison of trend estimated by Hodrick-Prescott filter and

Sen’s slope estimator

In Fig. 3(c), bandwidth shows periodic pattern in the ear-
ly stage, but it gradually decreases afterwards. This time se-
ries not only show periodic behavior but also show non-
seasonal behavior in the later phase. We can see the Hodrick-
Prescott filter is still able to work in this situation. Except
these examples we present here, the Hodrick-Prescott filter
performs also well on other time series.

According to the comparison, the Hodrick-Prescott filter
performs better on nonlinear estimation than the Sen’s esti-
mator, which can suggest more information (like aging phase
segmentation) about aging process. And whether or not the
time series is periodic is of no differences, for the Hodrick-
Prescott filter.

C. Distinguishing between Abrupt Change and Gradual
Degradaton

Figure 4. Comparison between Hodric-Prescott filter and Sen’s estimator
on abrupt change identification

In fact abrupt change is often caused by some transient
events and degradation of this type is usually “sharply” (see
Fig. 4) but not gradually or smoothly. Aging, however, is an
accumulative degradation process, so the trend estimator
should be able to differentiate abrupt change from aging
trend. We apply both the Hodrick-Prescott filter and the
Sen’s slope estimator to an artificial series with an abrupt
change in the middle. We can see that the Sen’s estimator
interpret this process as a sustained downward trend, while
the Hodrick-Prescott filter estimates a trend which keeps
stable in most times and only degrades only in a short range.
The Hodrick-Prescott filter can identify abrupt change,
which is an improvement to the Sen’s slope estimator.

IV. MEASURING SOFTWARE AGING

A. A Composite Metric Aging Severity
In the last section, we have shown that the Sen’s slope

estimator can’t identify abrupt changes. The Sen’s slope es-
timator has this disadvantage because it only measures the
degradation amount, without incorporating another signifi-
cant feature of aging-which is “gradualness”. We propose a
composite metric AS (Aging Severity) combining these two
factors together. See R represents degradation amount and G
represents the degradation “gradualness”, then AS can be
computed: ./ = 04� ⋅ 64
, (0 < 0 < 1, 0 < 6 < 1, 81 + 82 = 1) (4)

0 50 100 150 200 250 300 350 400 450 500
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Execution Time (seconds)

A
ve

ra
ge

 B
an

dw
ith

 O
ut

pu
t (

K
B/

s)

Raw Data
Trend estimated by
Hodrick-Prescott filter
Trend estimated by
Sen's estimator

247256

w1 and w2 are weights assigned to the two factors. The big-
ger the weights, the more decisive it is to AS. We consider
“gradualness” of degradation to be more important, so we set
w1=0.4, and w2=0.6. We give some explanation on compu-
ting R and G respectively. They are both computed using the
trend estimate by Hodrick-Prescott filter, with all the short-
term fluctuations eliminated.

For computing G: G represents the degradation
graduallness. In a time series, the times series is relatively
stable in some phases, while degrades severly in other phas-
es. The longer the stable phases, the smaller G is. The ra-
tionale for computing G is that we evenly split the estimated
trend into many segments and compare (using Mann-
Whitney test) neighboring segments to see whether the later
segment has a degraded median, compared with the former
segment. If we have M segments after splitting, and K pairs
of neighboring segments are tested a degradation, then the
gradualness under M segments is K/(M-1) , we express this
as: 69 = :

9�� (5)
However, we don’t know the optimal number of parti-

tions, so we compute G under multiple value of M and use
the median as the final G. This is a multi-scale computation
for G, which is more objectively.

For computing R: R denotes the magnitude of perfor-
mance degradation. We compute it as the ratio of median
degradation, between the first half and the second half of the
estimated trend.

The algorithm for computing AS is shown in Algorithms
1. All notions are listed below:

� P: A time series indicating resource usage or per-
formance, P= {P1, P2, …, PT}

� AS (P, t) represents aging severity of time series P,
measured on {P1, P2, …, PT}

� G (P, t) represents degradation gradualness of time
series P, measured on {P1, P2, …, PT}

� R (P, t) represents magnitude of performance deg-
radation of time series P, measured on {P1, P2, …,
PT}

B. Using AS to Dynamically Measure Software Aging
1) Experiments: The setup is composed of a VOD server

(based on Helix streaming server) and 3 client machines
connected via a LAN. Specific hardware configuration is as
follow: Intel Xeon 8 core 1.6GHZ (Processor) / 4GB
(Memory) /1Gbps (Network Adapter)/ for VOD server and
Intel Pentium4 2.59GHZ / 1GB/ 100Mbps for each client
machine.
Helix server supports a great many streaming media formats
such as .rm, .ra, .rmvb, .mov and .mpeg. During our experi-
ments, we deployed 160 .rmvb files on Helix server. These
files were the popular movies in the recent years within our
campus. We requested all the movies and the times that they
were played from the Wang An VOD Center (a website in
our university). We couldn’t access sever logs so we

implemented a workload generator - Clients Simulator,
adopting RTP/RTSP protocol, to generate user processes
concurrently. The simulated users were created and removed
on the client side periodically to simulate the diurnal pattern
of real workloads. Each user requests media files on Helix
server according to a probability distribution. The probability
density of each file was the proportion of times that they
were played. Server capacity test was executed as a prelimi-
nary work. And Clients Simulator will generate no more than
200 clients at a time in case of overloads. This experiment
was indeed far from an exact replication of actual environ-
ment and access pattern of the real VOD platform in our
campus, but it still had some advantages:

� The data and the accessing frequency (probability)
of the data were real.

� We carried out our experiments with no faults inject-
ed. The aging phenomenon spotted on our VOD
server was real and meaningful.

We collected 64 performance and resource usage indica-
tors all together. We carried out the experiment 3 times with
different configurations and aging was spotted 2 times. The
aged Helix server didn’t terminate but entered an inactive
state where averagely output bandwidth was only 20KB/s,
against almost 100KB/s when the system started. Memory
leaks also took place and totally 9 indicators showed signifi-
cant degrading trend. We will only show some typical indi-
cators as examples because the limited space.

2) Dynamic measuring of aging by AS: We compute
AS for each time series to examine whether it can
resonablly indicate the severity variation of software aging.
A reasonble metric should be:

248257

� When aging becomes more severe, which means, ag-
ing causes more amount of degradation or lasts long-
er or faster, the metric will become higher.

� When aging mitigate, that is to say, the amount of
degradation is reduced or degradation stops or slows
down, the metric should become lower.

� When aging doesn’t take place, the metric should
always keep close to zero.

Figure 5.Dynamic aging measurement by AS on memory usage

Figure 6. Dynamic aging measurement by AS on bandwidth

Figure 7.Dynamic aging measurement by AS on memory usage

Figure 8. Dynamic aging measurement by AS on Bandwidth
Fig. 5 shows that memory consumption grows much

higher after each user period ends (we confirm it is not due
to memory caching). As the leaked memory accumulates and
lasts, the AS becomes larger and larger. However, when
available memory is depleted, the memory consumption
stops to grow and AS decreases accordingly.

In Fig. 6, it shows that at first the bandwidth is periodical
with no bandwidth loss and AS keeps close to zero accord-
ingly. When bandwidth starts to decline, the AS keeps grow-
ing till bandwidth loss mitigate at the end.

In Fig. 7 and Fig. 8, when bandwidth and memory con-
sumption don’t show any aging trend, AS keeps to zero ex-
cept two or three peaks because the time series are not abso-
lutely trend-free in early phase.

We present several examples here, but we checked every
time series measured by AS. In most situations, AS can ac-

curately and dynamically describe the aging severity. More-
over, in a few time series, though AS gave reasonable meas-
urement, but it was obviously lagged.

V. CONCLUSIONS

In this paper we pinpoint several limitations of the widely
used Sen’s slope estimator that is for measuring software
aging severity and characterizing aging progress. Its short-
comings can be summarized as: (1) a not unified structure
which needs periodicity test and period length inference (2)
an oversimplified linear estimation of aging trend (3) unable
to distinguish between abrupt change and “aging-like” deg-
radation. We introduce Hodrick-Prescott filter to overcome
all these shortcomings. We also propose a composite metric
AS based on the estimated nonlinear trend to measure the
severity of aging. AS is validated on real aging time series
and the results show that it is a reasonable metric.

REFERENCE
[1]. A. Avritzer, E. J. Weyuker, “Estimating the software reliabil-

ity of smoothly degrading systems,” 5th International Sympo-
sium on Software Reliability Engineering, IEEE Press, Nov
1994, pp.168-177

[2]. K.S. Trivedi, K. Vaidyanathan and K. Goseva-Popstojanova,
“Modeling and analysis of software aging and rejuvenation,”
Simulation Symposium 33rd Annual(SS 2000), IEEE Press,
2000, pp.270-279

[3]. S. Garg, A. van Moorsel, K. Vaidyanathan and K.S. Trivedi,
"A methodology for detection and estimation of software ag-
ing," The 9th International Symposium on Software Reliability
Engineering, IEEE Press, Nov 1998, pp.283-292

[4]. M. Grottke, L. Lie, K. Vaidyanathan, and K. S. Trivedi, Anal-
ysis of software aging in a web server, IEEE Trans. Reliability,
vol. 55, no. 3,pp. 411–420, 2006

[5]. A. Bovenzi, D. Cotroneo, R. Pietrantuono, S. Russo, Work-
load Characterization for Software Aging Analysis. 22st Inter-
national Symposium on Software Reliability Engineering
(ISSRE), 2011 , pp. 240-249

[6]. D. Cotroneo, R. Natella, R. Pietrantuono, S.Russo, “Software
Aging analysis of the Linux Operating System,” 21st Interna-
tional Symposium on Software Reliability Engineering
(ISSRE), 2010 , pp. 71-80

[7]. S. Garg, A. Puliafito M. Telek and K. S. Trivedi, “Analysis of
Software Rejuvenation using Markov Regenerative Stochastic
Petri Net,” In Proc. of the Sixth IEEE Intl. Symp. on Software
Reliability Engineering, Toulouse, France, October 1995, pp.
180-187

[8]. J. Alonso, J. Torres, J.L.Berral, R. Gavalda, “Adaptive on-line
software aging prediction based on Maching Learning,”
IEEE/IFIP

[9]. R.Hodrick, E.C.Prescott, “Post-war U.S. business cycles: An
Emprirical investigation,” Journal of Money, vol. 29,no. 1,
1980

[10]. R.M.Hirsch, J.R.Slack, and R.A.Smith, “Techniques of trend
analysis for monthly water quality data,” Water Resource Re-
search, vol.18, no.1,1982, pp.107-121

[11]. E. Schlicht, “Estimating the smoothing parameter in the so-
called Hodrick-Prescott filter,”, Journal of Japan Statistical
Association, vol.35, no. 1, 2005, pp. 99-119

249258

